
Chip Stacking and a Condition on ∆̃2m+1

Michael Dotzel

August 9, 2017

1 Introduction
In their paper "Sorting via Chip Firing", Hopkins, McConville, and Propp ex-
plore a variant of the standard unlabeled chip-firing process by assigning numer-
ical values to the chips and firing them on Z. They establish that the labeled
configuration ∆2m (m>0 an integer) sorts the labeled chips sequentially along
Z, and that there are bounds of length bn + 1/2c on the location of any chip
(k) for an odd number of chips n. In this paper, we present motivation and
proof of a condition on ∆̃2m+1 that refines the possible stable permutations of
[2m+1] on Z, and some properties of unlabeled configurations that when fired
upon yield the unique unlabeled stable configuration δ̃m.

2 Chip Stacking
Suppose we are given a labeled chip configuration on Z with chips (a), (b) with
a<b occupying vertex i. As defined in [1], a chip firing at i involving (a) and
(b) moves (a) to vertex i-1 and (b) to vertex i+1.

Definition: Given a configuration C with chips (a) at vertex i-1 and (b) at
vertex i + 1, with a < b, a chip stacking at vertex i involving (a) and (b) is
the operation that moves both (a) and (b) to i. It is easy to see that chip firing
and chip stacking are inverse operations of one another.

We will present some other definitions for the corollary and theorem to
follow:

Definition: C a configuration with n labeled chips, and suppose there are
chips (a1), (a2), . . . , (ak), a1 < a2 < · · · < ak, and C(a1) > C(a2) > · · · > C(ak).
{ai} is called k - decreasing.

Examples of chip stacking

2.1 A Lemma
We now reiterate a lemma found in [1]:

Lemma 1. (This appears as lemma 12 in [1]) Suppose ∆n → C. Then we have
−b(n+ 1− k)/2c ≤ C(k) ≤ bk/2c.

1

This lemma implies the following

Lemma 2. Suppose C is a stable configuration on 2m+1 labeled chips. Then it
is impossible for there to appear in C a k - decreasing sequence for k ≥ m+1.

(From examples that will hopefully be uploaded soon) We propose the fol-
lowing refinement of lemma 2:

Lemma 3. Suppose C is a stable configuration on 2m+1 labeled chips. If there
exists a 3 - decreasing sequence k < j < i , C(k) > C(j) > C(i) in C, then for
any configuration D that can chip fire to C we cannot have i, j, and k all occupy
the same vertex of D.

(In the case of the ternary labeling system Mr. Hyde proposed, where chips
1, . . . , m are given the value -1, m+1 is given the value 0, and the rest are
valued 1, although it is certainly very possible to stack 1,0, and -1 together, this
makes no distinction between a value 1 chip that’s not part of the 3-decreasing
sequence and one that is. So our conjecture for a fully labeled set of chips
remains plausible.)

Proof. (sketch) First, when we mention stabilization in this proof, we mean
with respect to the underlying unlabeled chip configuration δ̃2m+1. We will
examine the contrapositive of the lemma above, and induct upon the number
of chip firings n that must be applied to D in order that it stabilize. For n =
1, we have the chip configuration in which all 2m+1 chips are placed along Z
except chips i, j, and k, which are stacked at D(i) = 0. This poses a problem:
assuming D stabilizes with the conditions that k < j < i and C(k) > C(j) >
C(i), we must apply a chip firing which moves i and k such that they move
to the adjacent vertices to the left and right, respectively, and this contradicts
the chip firing convention of moving larger chips right. Now assume that for
n ≤ M chip firings away from a stable configuration with k < j < i and
C(k) > C(j) > C(i) (M > 1), i, j, and k cannot be in the same column. Now
consider D* a configuration that is M + 1 chip firings away from stabilizing
(in the unlabeled sense), with i, j, and k occupying vertex D(i) , k < j < i
and C(k) > C(j) > C(i) in C = D̃*, should it exist. This means that there is a
series of chip firing moves f1, f2, . . . , fM+1 that yield a labeled stabilization with
the properties described above. However, if our first chip firing move involved
none of i, j, or k, then after chip firing we would be left with a configuration M
firings away from stabilization with i, j, and k all occupying vertex D(i), which
means such a configuration cannot stabilize with the prescribed conditions. So
we will assume that our first firing move involves some of i, j, or k. Now
consider the second chip firing f2; if it does not involve i, j, or k, then we
can apply a chip stacking operation to stack the i, j, and/or k that were fired
through f1, which would yield a configuration involving i, j, k occupying D(i)
which is M firings from a stabilization assumed to involve k < j < i and
C(k) > C(j) > C(i); by induction this is a contradiction. So we assume f2 also
involves some of i, j, and k. Continuing in this fashion, we obtain a sequence

2

of chip firings f1, f2, . . . , fs, each of which involves either moving some of i, j,
k or firing a vertex such that the inverted subsequence of chip firings (i.e. the
set of chip stackings) that move i, j, and k back to D(i) is of size s. Eventually
i firing left and/or k firing right will encounter chips p1 , p2 such that i > p1
or k < p2 upon reaching fs (this will of course happen if i, k are fired right,
left respectively. If i and k did not fire with a chip smaller/greater than it,
then i/k would be to the right/left of j, respectively). Denote D** by the
configuration obtained by applying f1, f2, . . . , fs to D*, and the positions of i,
j, and k in D* are D*(i),D*(j),D*(k). In order for D to stabilize, D** must
stabilize, and so there are further chip firings fs+1, . . . , fq such that fq is the
first chip firing at D**(i) = D*(i) involving i and p1 (or likewise with k and
p2). Upon applying fq, we have that i/k move to vertex D*(i) + 1 / D*(k)− 1.
But we note that we simply need to apply chip stackings which invert the
chip firings f1, f2, . . . , fs−1, fs+1, . . . , fq−1 to D** in reverse order to obtain a
configuration D which is M-1 chip firings away from stabilization, and in which
i,j, and k occupy the vertex D(i), which is a contradiction under the induction
hypothesis.

2.2 Unlabeled chip stacking
Starting from the unlabeled chip spike δm, we obtain a unique stable configu-
ration δ̃m. It is then a natural question to study those unlabeled configurations
which, when chip firings are applied, yield δ̃m - in other words, what are the
different "maximally unstable" configurations one could obtain via chip stacking
from δ̃m?

Definition 2.2.1: A chip configuration C is maximally unstable if no
chip stacking can be applied to any vertex of C.

It is easy to see that δm is an example of a maximally unstable configuration.
Here are a few properties regarding such unstable configurations:

Proposition 1. Suppose we are given δ̃m; then in order for δm to be achieved
through a series of chip stackings, our first two moves cannot both involve chip
stackings at vertices i and j such that | i− j |≥ 3.

Proof. Starting from δ̃m, our first chip stacking at vertex i will pinch chips from
vertices i± 1 to stack on vertex i. If our next chip firing is at vertex i± 3, then
vertices i± 1, i± 2 will be devoid of chips. It is impossible for any chip stacking
process to reconcile the intervals on either side of this gap with each other, since
the chip stacking operation only traverses gaps of length 1. In general, if two
chip stackings occur at vertices i, j, with | i− j |> 3, then chip-occupied vertices
are divided by the gaps created by these stackings. Any series of chip stackings
must eventually move the gaps created at vertex i ± 1 and j ∓ 1 towards one
another so as to reconcile the disjoint intervals of chips created by these gaps
(if the destabilization δm is to be achieved, as the chips must combine into one
contiguous interval with at least one chip on each of its vertices). But after
finitely many chip stacking operations we arrive at a configuration in which

3

two gaps are adjacent to one another, which is impossible to traverse by a chip
stacking operation.

Definition 2.2.2: A chip stacking operation at vertex i (where there is
a nonzero number of chips occupying i) of configuration D is called selfish if
applying it leaves vertex i+ 1 and i− 1 devoid of chips, i.e. vertices i± 1 have
only 1 chip occupying them. (include example(s) of selfish stacking)

Definition 2.2.3: A chip stacking operation at vertex i is called selfless if
vertex i+ 1 is occupied by ≥ 2 chips while vertex i− 1 is occupied by 1 chip, or
vice versa. The former selfless stacking is called right selfless and the latter
left selfless. (include example(s) of selfless stacking)

Note that proposition 1 can be restated as follows: Suppose we are given
δ̃m; then in order for δm to be achieved through a series of chip stackings, our
first two moves cannot both be selfish stackings at vertices i and j such that
| i− j |≥ 3.

Definition 2.2.4: A chip stacking operation at vertex i is called continuing
if both vertices i+ 1 and i− 1 involve chip stacks of height ≥ 2.

We will first focus on an odd number of chips. Considering δ̃2m+1, we have
determined via proposition 1 that the second move cannot also be a selfish
stacking. However, we can observe that as long as there are two disjoint vertex
intervals with chips in them as called for by the first selfish stacking, we can-
not apply another selfish stacking. For supposing we do, we argue as we do in
proposition 1 to show that a gap of length two would appear, eliminating the
possibility of the configuration recovering δ2m+1. This means that in our quest
to recover δ2m+1 from δ̃2m+1, we perform the following process:

1. Choose a vertex i ∈ [−m+ 1,m− 1] to perform the first selfish stacking.

2. Since we cannot apply another selfish stacking, we must perform a selfless
stacking at either vertex i− 1 or i+ 1. Rightness or leftness depends on which
side of i the stacking is to be applied: if left of vertex i, then a right selfless
stacking can be applied, and vice versa. Through applying a selfless stacking,
there will always remain a stack of height 2, so we may continue applying selfless
stackings and continuing stackings until the chips converge to a single contigu-
ous interval of chips.

3. Now that we have a contiguous region, we may (depending on the number
of chips available) apply a selfish stacking. However, upon doing so, we cannot
perform another selfish stacking, as eventually our stacking process would lead
us to a gap of length 2. The same rules apply for the left/right selfless stackings
after the selfish stacking is applied. In general, our moves may be any of the
other types of stackings as defined above, so long as before another contiguous
configuration is acheived we will not apply 1) ≥ 2 selfish stackings, 2) a selfish
stacking and a selfless stacking, or 3) a left selfless and right selfless stacking (in
that order) at vertices i and j > i such that | i− j |≥ 3.

4

4. Continue applying continuing, selfish, and selfless chip stacking opera-
tions in the same vein as step 2 until we arrive at another contiguous interval
with chips.

5. Continuing this process, we arrive at δ2m+1: suppose that instead, our
chip stacking operations yield a configuration D 6= δ̃2m+1 which has one con-
tiguous interval with chips, but is maximally unstable. This implies that D
consists of two columns of chips at vertices s and s ± 1. This is because any
contiguous region of chips greater than 2 in length can see a chip stacking act
upon it, and so is not maximally unstable (Need to show that this is impos-
sible; i.e. show that such a configuration cannot be obtained by δ̃2m+1 - we
know it can’t converge to δ2m+1). Recall the statistic φ∞(c) :=

∑
i∈Z(i× c(i)),

and proposition 1 in [1] - namely, that φ∞(c′) = φ∞(c) for c′ a configuration
obtained from c via chip firing at a vertex. φ∞(δ̃2m+1) = 0. Let c be the
configuration with only two adjacent columns of chips, 2m + 1 chips in total.
Then φ∞(c) = s(k) + (s− 1)(2m+ 1− k) = (s− 1)(2m+ 1) + k = 0 if it were
to be obtained from δ̃2m+1 by a series of chip stackings. With k positive, and
(s− 1)(2m+ 1) positive, this implies s = 1 and k = 0. So by contradiction we
have that the contiguous intervals as determined by the chip stacking converge
up to δ2m+1, since our method gives us contiguous intervals of decreasing size.
(Still need to explain: method described gives a way of finding an unstabilizing
path to δ2m+1 relying on stackings by means of reducing the size of contiguous
intervals)

This process for recovering δ2m+1 leads to the following

Lemma 4. Given δ̃2m+1, and let C be the set of configurations that destabi-
lize to δ2m+1. Then any element of C can be obtained by an appropriate series
of continuing, selfish and selfless stackings (appropriate to the rules explained
above in the process for recovering δ2m+1). In other words, all possible allowable
sequences of these stackings by the rules above determine all possible configura-
tions that stack to δ2m+1.

3 Further questions
Some initial aspects of δ2m+1 recoverability that we hope to continue exploring
are 1) the claim above and 2) the number of different configurations that chip
stack to δ2m+1. We also want to continue working on the label restrictions of
stabilizations of ∆2m+1 so as to shed more light on conjecture 26 in [1].

5

4 References:
Sam Hopkins, Thomas McConville, and James Propp. Sorting via Chip-Firing.
2016.

6

